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A CONSTRUCTIVE METHOD 
THE THEORY OF SYSTEMS 

The formal axiomatic approach to establishing the validity of the theory 

OF ESTABLISHING THE VALIDITY OF 
WITH NON-RETAINING CONSTRAINTS* 

V.V. KOZLOV 

of constrained systems has obvious disadvantages: the source of the 

initial axioms (such as the Befreiungsprinzip and the conditions for 

constraints to be ideal) remains unclear. A constructive method is 

proposed for establishing the validity of the main principles of the 

dynamics of unilaterally constrained systems (including systems with 

collisions). The idea of the method is related to the analysis of physical 

methods forrealising constraints (stiff Systems , anisotropicviscosity, and 

apparent additional masses). This approach yields simple equations of 

motion, suitable for the entire time interval and more accurately incor- 

porating the actual dynamics. Several problems of the mechanics of 

oscillatory systems with collisions are solved by the method. In particular, 

conditions are determined for the stability of periodic oscillatory modes 

and a study is made of the evolution of motion with inelastic collisions 

when the coefficient of restitution is close to unity. Total integrability 
is established and a qualitative analysis is presented of the problem of 

parabolic billiards in a uniform force field. 

1. Systems with bilateral constraints. Let T(z',.T) be the kinetic energy and 

V(r) the potential energy of a holonomic system with n degrees of freedom. The dynamics of 

the system is described by the Lagrange equations with Lagrangian L = T - V. which is 

assumed to be a smooth function of x and x‘. Let f(z) be a smooth regular function (df # 0 
at points where f = 0). If we take f(z) = 0 as the equation ofaconstraint imposed on the 

system, the motion of this "constrained" holonomic system with n - 1 degrees of freedom is 

described by the Lagrange equations with multiplier A: 

(L,i.)' - L,’ = hj,x’, f (.r) = 0 (1.1) 
Eqs.(l.l) are usually derived using the D'Alembert-Lagrange principle. In a formal, 

axiomatic setting, the validity of the D'Alembert-Lagrange principle is derived from the 
Befreiungsprinzip and the axiom that the constraints are ideal. From the physical standpoint, 
it seems more promising to adopt a constructive approach to establishing the validity of the 

dynamics of constrained systems, based on an analysis of various concrete realizations of 

constraints (stiff systems, anisotropic viscosity, and apparent additional masses). 
To illustrate the possibilities, let us consider the dynamics of an "unconstrained" 

holonomic system with n degrees of freedom, with kinetic energy T,,- = T + CL(/')','~, andpotential 
energy v, = v + fij’l2, subjected to additional forces of viscous friction with a Rayleigh 
dissipative function FN = y(f')*/2. The coefficients a, p and y satisfy the conditions 

a = a, (.V + 0 (V)), p = PO (N + o(N)), y = vO (N t 0 (M)), (1.3) 

WIlelIe %, PO. To are non-negative real numbers, N is a positive parameter whichwillultimately 
be made to approach t_ CO. The added term in the expression for the kinetic energy T,y rep- 
resents anisotropy of the mass distribution (such as apparent additional masses and moments 
of inertia in the problem of a solid moving in a liquid). The additional potential 
sets up a force field directe,d towards the surface j = 0. We note in addition that it2 
dissipative forces do not perform any work when the motion is confirmed to the surface f = 0. 

We write the equations of motion 

LN = T.y - I'.., 

and consider their solutions with initial conditions 2‘ (0) = IO, I' (0) = X0', such that 

f (x0) = 09 A (50) zo' = 0 (1.4) 
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Theorem 1. Assume that a solution of Eqs.(l.l) with initial data rO,zO' is defined in an 
open time interval containing [O, Tl, and that not all the coefficients %I' B0 and y. in (1.2) 
vanish. Then, for sufficiently large N, SolutiOnS of Eqs.(l.3) with the same initial data are 
defined in the interval 0 c< t i; T, and as ,V-+ M they tend to solutions of system (1.1). 

If a,> 0. Theorem 1 may be proved by the method used in /l/. In the special case when 

1'0 = 0. the theorem actually follows from the results of that paper. Let a0 = (1 ,but PI, ;. 0. 
Then system (1.3) is singularly perturbed, and the theorem may be proved by applying the well- 
known Tikhonov-Gradshtein Theorem. Note that when yU = 0 this result follows from a more 
general result on the realization of non-holonomic constraintsbymeans of anisotropic friction, 

which goes back to Carathgodory (see /2, 3/, and also the appendix to /4/). In the case a,, 

1’,1, -= 0 but ;'" > 0, Theorem 1 was put forward by Courant and proved in /5/. 

2. A system with unilateral constraints. Let us apply the ideas set out in Sect.1 
to the problem of realizing a unilateral constraint / (.r) 0. We again consider a solution 
of Eqs.(l.l) with initial data JO> x0 satisfying (1.4) and let h(t) be the values of 1,along 
this solution. Now consider a motion ,z(t) with a unilateral constraint f (.r) 0 and the 
previous initial data. It is known that if h(t)<0 for all t, then the point z(t) remains 
constantly on the surface j(~.) :- 0. But if from some time r onwards l"(t) takes positive 

values, then at a time 7 the point z(t) leaves the surface f(.z) : 0 and at t>~ the 
dynamics of the system is described by the usual Lagrange equations with Lagranqian I, 1' .- 1' 

/6/ (note that the case t =:- 0 is not excluded). 

To proceed by a passage to the limit from the dynamics of the free system to that of the 
system with the unilateral constraint ! 0, we consider motion in a force field with potential 

VN = V + Nf2, if f < 0, and VN = v, if.1 f b 0 ('.I) 

The kinetic energy T is left unchanged. The motion of the system is determined by the 
Lagrange equations 

(T,. ')' - T,' = -V,V*' (3.') 

The generalized force - (V,)' is only piecewise-smooth, but it can be verified that Eqs.(2.2) 
satisfy the assumptions of the existence and uniqueness theorem. 

Theorem 2. Let z(1) be a motion of the system with unilateral constraint I(J) : 0 and 
initial data (1.4), defined in an interval [O, T,]. Assume that there is at most one T E 10, T,) 
such that f(r(t))= 0 for 0 < t &T and f (x (t)) > 0 for r<l< T-C T,. If X‘V (Q is the 

solution of system (2.2) with initial data (1.4), then for sufficiently large N it is defined 

for O-,1 /r and in that interval tends to 5 (t) as .v 3 Co. 

This assertion can be proved by the methods used in /5/. 

It should be noted that Theorem 2 is true both for T - IJ (the point J (Q immediately 

leaves the surface / = 0) and for r> T, r(1) moves on the surface f = 0). 
Rather than present the cumbersome formal proof of Theorem 2, we will illustrate it by 

an example, and also discuss the possibility of using the effect of apparent additional masses 

and anisotropic viscous friction to realize unilateral constraints. Consider the motion of 

a point of unit mass in the ,r,y plane, subjected in the left half-plane (~:(;0) to the action 

of a force with components (0, --g). g : const > 0, and in the right half-plane (z> 0) to the 

action of a force with components (0. fi). This force is irrotational, but not continuous. If 

at time 1 = t, the point was on the vertical line .r -7 0. then its state at time 1 1, is 

taken as the initial state for determining its subsequent motion in the other half-plane. 

Consider the motion with a unilateral constraint y ‘0. Suppose that the initial state of 

the point at t 0 is 

s : -1, y u, .u' z 1. y’ = 0 (2.3) 

Then the law of motion is 

z (t) z t - 1; y (t) = I), t <> 1, y (t) 2 6 (t - l)W, t > 1 (2.4) 

At time t = 1 the point leaves the constraint. 

We now free the system from the constraint, replacing the action of the latter by an 

elastic force with components (0, -1Vy), y .' 0, vanishing in the upper half-plane. Then the 

solution of the new equations of motion with initial data (2.3) at t ,'l is 

s(I) m- t - 1, y (t) = g.v-' (co': lLzPt - I) 

Consequently, at times 0 < tc.1 tile poinJ is confined to a narrow strip -&!/Iv .\Y C-,0. 

performing oscillations at a high frequency I/N (Fig.1, the solid curve). Then, at sometime 

T * ! * (&-“L), it reaches the axis y = 0, with y (T) = 0 (;\'-I), 1)' (r) z 0 (N-l"). At 12 r 

the point will describe a parabola in the upper half-plane. Inthe limit (.\i-+ @a) the motion 

of the point is described precisely by formulae (2.4). 
We will now consider another mechanism for realizing the constraint: if the point enters 

the lower half-plane, its kinetic energy receives an increment ,vy"?. solving the equations 

of motion of the mechanical system with initial data (2.3), we obtain 



x(t)=t-1; Y(t)=-*,' t< 1 

Y 0) = 
g (P - 4t $2) 

2 (.Y + 1) .' 
1<t<2+1/2 
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(2.5) 

ly I / / 
/I 

/ 4 
Consequently, if 0< t< 2 t j,pj, then Y(t)<0 (Fig.1, 

the dashed curve). At t>2- 1’2 the point will describe 

a parabola in the upper half-plane. Note that the time at 

/ which the point crosses the horizontal line Y=O(t=zfJ,2) 

/ x is independent of N. As 1V-t Co the solution (2.5) tends to 
-/ 

a solution 

x(t)=t--l; y(L)=O, t,<2+1:2, y(t)=g(t--2- (2.6) 
Fig.1 JG!)'/2, t > 2 + If' 

which is different from (2.4). The extra time taken by the moving point to leave the con- 

straint is due to its additional inertia. 

Finally, let us consider one more case: a point initially in the lower half-plane is 

subjected to a viscous friction force with components (O,- NY.). Solving the equations of 

motion with initial data (2.3), we find that at O( t(~, r = 2 L 0 (N-r), the point moves 

in the lower half-plane and it crosses the horizontal line at time T. Its trajectory is 

qualitatively similar to the dashed curve in Fig.1. At t>r the point again describes a 

parabola. If we now let N go to + 00 the limiting motion is 

I (t) = t - 1; y (t) = 0, t < 2, y (1) = g (t - 2)52, t>2 (2.7) 

which differs from both (2.4) and (2.5). But if the force (O.--NY') is put equal to zero (then 

Y' > 0) and N goes to infinity, we obtain the classical solution (2.4). 

Thus, by introducing an elastic force field andthenincreasingthe coefficientofviscosity 

to infinity we obtain the classical model of motion with unilateral constraints. Introduction 

of apparent additional masses and anisotropic viscous friction leads to the classical models, 

but with a delay in the time necessary to leave the constraint. 

One cannot assert that motions (2.6) and (2.7) bear any relation to reality. They are 

motions in well-defined models of systems with unilateral constraints, whose choice depends 

essentially on the specific physical methods used to realize the constraints. It should be 

borne in mind that in reality one can have combinations of various effects, also leading in 

the limit to a constrained motion (see, e.g., Sect.1). The order of magnitude of the ad- 

ditional forces then plays an important role. 

For example, consider the case of a point subjected in the lower half-plane (y<O) to 

the simultaneous action of a friction force (O,- NY') and an elastic force (O,-c*Ny). Replacing 

the unilateral constraint y>O by linear fields of elastic and dissipative forcesisphysi- 

tally equivalent to the consideration of a Kelvin-Voigtmedium. Calculations show that the 
motion with initial data (2.3) as N-c-a is again characterized by a delay in the time 
necessary to leave the constraint. But if the friction forceisreplaced by a dissipative 
force (O.- k@y’), where k = coast>0 and C? > k2, then as A' - 30 one obtains the classical 
solution (2.4). 

Note that Theorem 2 is also true in case the potential VN is replaced by a potential 

V,* = V+ exp (--Nf). This remark may prove useful in analytical studies, since the function 
VT* is infinitely differentiable. 

3. 14otions with collisions. Let s(t) be the motion of a system with a non-retain- 
ing constraint f(z) SO, where f(.r(L))> 0 for t, < t< t,. If f(z(&)) = 0 and the velocity 

x' (12) is not in the tangent plane to the surface f(z) = 0 at .z = s(t2), then at time t = t, 
a collision effect will take place. The motion may continue at times 1> t, in various ways, 
depending on the hypothesis adopted as to the physical nature of the collision (absolutely 
elastic, inelastic, etc.). In order to verify these hypotheses, and also to ascertain the 
limits of their applicability, we drop the constraint f>O and consider a force field in 
the region f(z)< 0 with potential VN = V.+ csAVf2~2,c> 0, assuming that the system moves 
in that region subject to viscous friction forces with a Rayleigh dissipative function FN = 

k I/m(f)“, k = const> 0 (see Sect-l). 

We shall assume that at a time 1 = 0 the system is in the position 5 = (r,, . . .( 5,) = 0 
and has a velocity I' = (ul, . . ., II,), and moreover 

z af,'ari JXEOUi < 0 (3.4) 
At t>o the point s(t) enters the region f< 0 and the system is subjected to the 

action of additional irrotational and dissipative forces. It turns out that if N is large 
then, in a short time interval (of the order of l/y'x) the point 5 (1) will hit the bound- 
ary f=O at a point near .r=O; the tangential components of the velocity at the time the 
point enters and leaves the region f(z)< 0 remain practically unchanged, and the normal 
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component of the velocity (in the metric determined by the kinetic energy) at the time of exit 

may be expressed in terms of the normal component atthetime of entry and the coefficients k 
and c. As ,~+oo we obtain the laws of inelastic collision (as k-+0 they become the laws 
of elastic reflection). 

To implement this idea, it is convenient to transform to special coordinates 
in the neighbourhood of the point z z-1 0, in terms of which f (x) G s1 and the krnet?: 'e'n,r'& 
has the form 

Such coordinates always exist (in Riemannian geometry they are known as semigeodesic 

coordinates /7/). In terms of them, the tangential component of the velocity x' is determined 
by the components sz', . .,x,,‘, and the normal component by the derivative x'~. Relation (3.1) 
takes the simpler form zl' (O)<O. 

Theorem 3. Assume that k? < czfill (0). Then there exists a time 

such that x1 (6.~) = 0. xi (6~) = 0 (JV-',~) (i > 1) and the following limit relations hold: 

lim x1' (S.v) = -_pzI' (0), P = exp (-d/m) 
TV-, 

(4.2) 

lim J,' (6,~) = xi' (0), i > 1 
A--m 

The number e< 1 is known in the theory of stereomechanical impact as the coefficient 

of restitution /a/. If IY -~= 0 (no dissipation), then (3.2) constitute the conditions for an 
absolutely elastic collision. We now outline the proof of Theorem 3. 

We write the equations of motion for those values of t > 0 at which z1 (t) :( 0: 

Here l',,i are the Christoffel symbols of the metric sip and g 
iL 

are the elements of 

the matrix inverse to I( i(,j 11. Now transform Eqs.(3.3) to a new time variable +t = \!'x, denoting 

differentiation with respect to r by a prime: 

Letting f be a small parameter, we seek solutions of system (3.4) in the form 

.I') (r) ~7 cti (I) T 0 (t.). i 1, ., I1 

The coefficients ti satisfy the equations 

El" -+ %kG'Z,' (- c'(;j, :_ 0, Ei" = 0 (i > 1); G = g" (0) > 0 

These equations have the following particular SOlUtionS: 

j, = 2,' (0) eXp (--A,Gr) w-1 Sill cot 

o = I/& - k’(;‘, $, .= xi’ (0)~ (i > 1) 

Since E occurs regularly in the right-hand terms of Eq.(3.4), we can apply FoincarG's 

Theorem /9/, according to which, for small values of E system (3.4) has solutions of the type 

(3.5) in any finite interval of the new time variable T. By (3.6), the function x1 (z) must 

have a zero in the interval (0, an). Returning to the previous time variable t, we obtain 

5, (t) = x1' (0) e\p (--kG fXf) (Q j’Xml sin 0 \CTt + 
0 (:y-':q 

si (I) = 2,' (0) t 1 n (.V-“:, 

These formulae imply (3.2). 
Theorem 3 expands the limits of applicability of Theorem 2. Let 5 (t) be the motion of 

a system with unilateral constraint j(z)>O,beginning at the boundary f(z) = 0. Assume that 

in the interval 0 <t < T there are finitely many times rI,..., T, at which the system 
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"collides" with the constraint, and that the velocities at collision I' (Ti - 0) are transverse 

to the tangent planes to the surface f(x) = 0 at the points x lti). Theorem 2 states that 

the notions of the free system in a field with potential VN, withthe same initial data, tend 

to the notion x (t) in the interval O< t<rl as N-too. Theorem 3 (in the special case 

k = 0) implies that this limiting relationship holds over the entire interval O,<t,<T. 
Furthermore, if k = 0 Theorem 3 is also true for the potential V,\, * = V + exp (-Nf) (see Sect. 

LJ. 

As an illustrative example, let us consider the inertial notion of a point inside a circle 

of radius R, on the assumption that the coefficient of restitution e on impact is constant 

and close to unity. Since the tangential component of the velocity is constant, one has an 

integral of areas. Consequently, at the collision tines LJ CO" 'x = II = coast, where u is the 

velocity of the point and a the angle between the velocity vector and the tangent to the circle. 

Let us investigate the evolution of v as a function of tine. To this end (by Theorem 3), 

we replace the unilateral constraint by a field of elastic forces and by dissipative forces 

with coefficient of friction 2/ifZ, where k is small. If k= 0 we have an unperturbed 

integrable problem. Its phase space is partitioned into invariant tori with conditionally 

periodic notions. Averaging the perturbed equations over these tori and letting .V-X, we 

can obtain an evolution equation for the velocity: 

"' = (e - 1)(2H)~'G I/Pz? 

Integrating, we obtain 

L‘ = U,C"S [U (e - I)(ZH)-'t 7 a,] 

where CL,, is the value of the angle CL at tine t==(f. Consequently, at tine t > Z/~;]U (I - e)] the 

representative point of the averaged system will slide along a circle of radius Rwithvelocity 

u. 
4. Stability of periodic oscillations with collisions. We shall now demonstrate 

the efficacy of the proposed method in the theory of systems with unilateral constraints, 

considering as an example the stability of periodic oscillatory modes with collisions. Con- 

sider the motion of a material point of mass m in a vertical plane with Cartesian coordinates 

.r,y (the y axis pointing upwards)! never falling below the curve y = f(x), where f isasnooth 

function such that f (0)~ 0, f’(0) = O,f”(O)> 0. This problem admits of a family of periodic 

notions, in which the point m oscillates constantly on the y axis. As parameter we take the 

velocity u of the point at its tine of collision with the curve. A criterion was evolved in 

/lo/ for this solution to be elliptic (g is the acceleration due to gravity): 

f" (0) < &UP (4.1) 

We now replace the unilateral constraint 1/ >f(.z) by an elastic force field withpotential 

V.v = mgy, y .-. f (r); VH = mgy + m.$’ (y - f (.+“~~g Y < f (4 

The problem of the notion of the point m in a field with potential VN has a family of 

T-periodic solutions: 

I0 (t)= 0, 0 < t < T (4.2) 
yO (1) = gN'-' (cos fFt - 1) - LA-‘/~ sin 1/Xt, 0 < t < z 

y. (4 = rt - gt* 2, T < t < r + 2ug-’ 

‘c = 2N-‘,> arcctg (-gV-1N-‘i2), T = z + 2ug-’ 

where V> 0 is the velocity of m in the position z = y = 0. The equation for the X-coor- 

dinate of m is 

I" = 0, y > f; x” = Nf’ (x) (y - f), y < f 

The variational equation for the periodic solution (4.2) is 

(6x)” + p (1) 6x = 0; p (1) = -Nf” 

p (t) = 0, s<t<.T 

Since p (t)), 0, the conditions for stability of 

determined by the Lyapunov integral test /ll/: 

T 

T s P (t) dt < 4 
0 

(0) Y, U), 0 < t & z; (4.3) 

the trivial solution of Eq.(4.3) may be 

(4.4) 

Calculation gives the following sufficient condition for stability: 

gf" (0) Ig-'v + N-‘/a arcctg (-gv-‘N-‘~~)12 < 1 

For large N values this expression can be simplified: 
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f” (0) :,z gv-2 - ng%l-3N-‘l~ + 0 (N-y (4.5) 

In the limit as N+ 00 we obtain the well-known condition (4.1). Inequality (4.5) 
shows that replacing the unilateral constraint by an elastic force field of high stiffness 

(which is a better approximation to reality) may cause the vertical oscillations of thepoint 

to become unstable. 

It is an interesting fact that as iv-+ CQ the stability condition (4.5) approaches the 

criterion for stability in the linear approximation (4.1). This observation leads to 

Zhukovskii's result, according to which the constant on the right-hand side of Lyapunov's 

inequality (4.4) cannot be increased /12/. 

Let us consider another similar problem, concerning the stability of the two-linked 

periodic trajectory of a Birkhoff billiard ball (Fig.2); a point is moving on a segment 1, 

periodically and elastically recoiling from a curve. Let R1 and R, denote the radii of 

curvature of the curve at the endpoints of the segment, R,<Rz, We again introduce an 
elastic force field, and the result is a variational equation similar to (4.3): 

(4.6) 

Here u is the constant velocity of the point inside the billiard table; 

the values of the function p(t) are prescribed over its period. Applying the 

Fig.2 
Lyapunov integral test (4.4) and then letting N-m, we obtain a sufficient 

condition for stability (to a first approximation) of the two-linked trajectory 

I< R,W(Rl + 4) (4.i) 

In the general case, however, this condition is not necessary. The condition for the 

stability of the two-linked periodic trajectory is (see, e.g., /13/) 

l<R, or R, < 1 < R, f R, (4.8) 

Condition (4.8) is identical with (4.7) if R,-m. In that case the function P (t) in 
Eq.(4.6) has only one short interval in which it is positive (as in Eq.(4.3)). 

Condition (4.8) may be derived by means of Lyapunov's general method of analysing the 

stability of the trivial solution of the second-order Eq.(4.6) /ll/. The stability criterion 

is the inequality la)<2 for Lyapunov's constant 

Let us assume first of all that p(t)= R,-lf% GnL/Ff, O<~<IUV-'/~, and that for n,v-"2 < t .; 

T the function ,I(?) vanishes (we may assume without loss of generality that the velocity LX 

equals unity). It is clear that I,= 2TR,-‘, and the other integrals satisfy the estimate 

1 Ih. \ < c (.r”)“-‘, I, ;- 2, c = const > 0 

since the integration is performed only over a small domain in the space of the variables 

I,, ., lk and the differences 1, - fj are of the order of .V-I". Letting -CS we have T-21 

and the inequality (a / -< 2 becomes 1 -< R (corresponding to the case R,= m 

We now consider the general case oflEq.(4.6). It can be verified th:t 

in (4.8)). 

while the integrals Ih., !?),a, satisfy the estimates 1 Ik 1 < c(W”~-~, c > 0. AS N-03 the 

inequality I aI<2 becomes 
1 1 - 21 (RI-’ +- Hz-‘) + 2R,-‘R,-‘1’ / < 1 

This is clearly equivalent to (4.8). 

In the same way, one can obtain a condition for the stability of the periodic motion of 

a point between concave walls in the gravitational field (Fig.2). Let Ul (vt) be the velocity 

of the point in its lowest (uppermost) position. Since we are considering motion with 

collisions, it is assumed that ~~2 = rl* - 2gl> 0. The stability condition in the linear approxi- 

mation is 
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If L'*= 0, this condition is equivalent to (4.1). NOW let g tend to zero. In the limit 
we obtain the inertial motion of a point between two immovable walls. In that case vi - v (i = 

1.2) and v1 - u2 = gZ/u + o(g). Letting g-0 in inequality (4.9), we obtain the disired stability 

condition (4.8). 

To conclude this section, we note that the coefficient ~(2) in Eq.(4.6) is closely con- 

nected with the Dirac h-function. Indeed, for any continuous function f(z), 

X/i. 

lim A 
c 

f (.r)sitl (hs) dt = 2f(O) 
F.-m 

‘0 

Thus, as iv - M we obtain the formal relation 

Substituting this expression formally into the expressions for the integrals Ik,and using 

the inequality [a[<2 for the Lyapunov constant, we obtain the stability condition (4.8). 

5. Parabolic billiards. In /lo/ M-theory was used to investigate the non-linear 

stability of periodic up-and-down jumps of a point in the gravitational field above a curve 

Y = I (I). In particular, it was shown that for a parabola (f (I) = zV20, a > 0), satisfying con- 

dition (4.1), these solutions are orbitally Lyapunov-stable. It turns out that this result 

follows quite easily from a stronger assertion, concerning the integrability of the parabolic 

billiards problem. 

To prove this, let us consider the problem of a material point sliding along a smooth 

paraboloid: 
2y + b = .?/(a + b) + #lb; a, b > 0 (5.1) 

As observed by Painleve, this system with two degrees of freedom has an additional first 

integral. Chaplygin reduced the integration of the equations of motion of inversion of Abelian 

integrals /14/. To do so, he introduced parabolic coordinates U, w(1u>/ a> ~20) by the 

formulae 
azz=(a+b)(a-u)(w-a), %y=u+w-@+a), ara=bvw 

and derived equations for the variation of v,w: 

(5.2) 

4 

[ 

(cd - flu - y) (a - u) ” 

1 
‘I, 

u* =- 
m (w-v) u+b (5.3) 

4 
w'=--- 

[ 

(-auJ2+~w+~)(W-u)W % 
m(w-U) wi-b 1 

Here m is the mass of the point, qisthe accelerationduetogravity, h is the total energy of 
the point, and y is a constant of integration. 

Now let the parameter b tend to zero. Then the paraboloid (5.1) becomes the region above 

the parabola y =zV(2a) in the vertical plane z=O, and the motion of the point along the 
paraboloid becomes free fall along the parabola with absolutely elastic collisions. A limit 
procedure of this type was apparently first discussed by Birkhoff /15/, who noted that the 
geodesics on the triaxial ellipsoid are transformed into the trajectories of a billiard ball 
inanelliptic field as one of the axes is reduced to zero. Since the Painleve-Chaplygin 
problem is integrable for all values of b>O, the limiting problem of parabolic billiards is 
also integrable. There is not much point in evaluating the additional integral, since re- 

lations (5.2) and (5.3) (in which one must put b-01 determine the law of motion of the point 
over the entire time axis. 

Formulae (5.2) and (5.3) enable one to present a complete qualitative analysis of the 
motion of a material point with unilateral constraint y>~"!2~ (see /14/). To this end, we 
consider the polynomial F(z)= aza- pz-v. which always has real roots; denote the latter by 
2,. z* (21 < 2%). Since F (L.) 2 0, F (1~) < (I. w>a>o>O,it follows that z* 2 Ui ,' ZI > L‘. 

We distinguish two cases: i)z,> a‘>zl, 2) z,>z,),a. In the first case 3 > IL' 2 (I, $1 i " ** 0. 
The trajectory of the point m is confined to the interior of a curvilinear quadrilateral 

z'la < 2y < z1 + Y?i(a - 21). 2Y < ze + zV(a --a,) (5.4) 

bounded by confocal parabolas (see Fig.3a). In the second case we have z* > I,. > Zl, (1 > L' > 0, 
and the trajectory of m is confined to the interior of the quadrilateral 

21 + zV(a - 2,) < 2Y < zz + .+/(a - z*), s/a < 2y (5.5) 

illustrated in Fig.3b. In the general case, the trajectory of m fills the quadrilaterals 
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densely, 

Fig.3 

The trajectories of the vertical oscillations of m correspond to the case F(a) =O, and 
therefore y=aG- fin. If 2nCL>~ (equivalent to (4.1))) then small perturbations of the con- 
stant first integrals h and 1; lead tothe first case and the quadrilateral (5.4) lies near 
the y axis. In that case the periodic motion is stable. But if F (0) = (I and za(r< p, then 
z, = (1 and the quadrilateral (5.5) degenerates to a lens-shaped figure 

.22/u f 21, $ z2 + z"l(n - zn), z2 > a 

In this case the vertical periodic oscillations are unstable. They are of hyperbol?c("'il 
type and consequently possess asymptotic trajectories. These asymptotic motions are in fact 
doubly asymptotic and exhibit a remarkable property: after each recoil, the trajectory of the 

point m passes through the focus of the parabola y=s2/(2a) (which is, of course, in the 
interior of the region (5.6) ). Moreover, the time between consecutive passages through the 
focus is a constant: 2g-11/2hm-'. This is of course the period of the vertical oscillations of 
m. 

If z,=z,>n, the point m moves along the parabola 

2!/ = II i_ &(a - t,,. IJ > ,&(Zn) (5.7) 

recoiling periodically from the original parabola y =,P(?n), which is confocal with (5.7). 
All these periodic motions have the same period ifa=. In the special case z1 = z2 = 0 the 
solution (5.7) degenerates to periodic vertical jumps of the point m to the heiqht ~'3 (the 
distance from the focus of the parabola). These oscillations are stable. 

This analysis furnishes a complete and graphic description of all non-degenerate motions 

of the point m. Let the energy be h =O. Then the point m occupies the lowest stable equilib- 

rium position. NOW increase h. At small h>U there appear two distinct families of 
Lyapunov non-degenerate periodic motions: vertical jumps and sliding along the parabola. The 

solutions of the second family exist for all h>O and are all stable (as the limiting case 

of solutions of type 1). The solutions of the first family also exist for all h, but when 

h mgn (when the height of the jump equals the distance to the focus of the parabola) the 

multipliers become equal to unity. This is a bifurcation point: when h > mjia there appears 

yet another family of stable periodic oscillations (5.7), and the vertical periodic jumps 

become unstable. 

6. Harmonic oscillator and elliptic billiards. we now consider the motion of a 

material point along the smooth surface of a triaxial ellipsoid under the action of an elastic 

force directed towards (or away from) the centre of the ellipsoid. This problem was integrated 

by Jacobi, who used elliptic coordinates /16/. If we let one of the axes of the ellipsoid 

go to zero, Jacobi's problem becomes the problem of the oscillations of a harmonic oscillator 

confined to the interior of an ellipse. If the coefficient of elasticity is zero, we obtain 

Birkhoff's elliptic billiards game. The dynamics of a harmonic oscillator inside an ellipse 

may be investigated by the method of Sect.5, using separation of variables - elliptic coor- 

dinates in the plane. 

For example, let us determine the conditions for the stability of the periodic oscil- 

lations of the oscillator, under which the point remains constantly on one of the axes of 

symmetry of the ellipse. Let a, b be the semi-axes of the ellipse (bGi a),c the coefficient 

of elasticity, and h the total mechanical energy of the oscillator. It turns out that if 

C 3 0, the motion of the point along the minor (major) axis of the ellipse is stable if and 

only if 
h > ll (0 < h < ‘/,~a*) (6.1) 

But if c<O. these conditions become 

h > ‘/2 ( c ) (a? - b”) (--‘I, 1 c ) a* < h < - ‘jz 1 c 1 (a’ - b’~) (6.2) 

The second of these conditions has a simple geometrical meaning: the amplitude of the 

periodic oscillations of the point does not exceed the distance from the end of the major 

semi-axis to the nearest focus. As the amplitudes increases, this solution destablilizes, 

ultimately becoming hyperbolic. The trajectories through the focus of the ellipse have a 

curious property: in equal intervals of time, the point alternately passes through the foci 

infinitely many times. This property is also valid for trajectories that are not tanqent to 



the boundaries of the billiard. 

Let c<O. Let us deform the ellipse in such a way that one of its foci remains fixed, 

while the other goes to infinity, and moreover (a-_~/a'-_b*)-con&. As a result, the ellipse 

degenerates to a parabola. If at the same time we also reduce the coefficient of elasticity, 

in such a way that IcIa-g, the problem of a harmonic oscillator inside an ellipse becomes the 

parabolic billiards problem investigated in Sect.5. It can be shown that in this limiting 

process the second stability condition of (6.2) becomes the well-known condition (4.1). 

The above results furnish stability conditions (in the linear approximation) for oscil- 

lations of a plane harmonic oscillator situated half-way between two convex surfaces of the 

same curvature. According to Sect.4, stability in the linear approximation depends only on 

the curvature of these curves at the endpoints of the rectilinear trajectory, but not on their 

shape. 

Let I be the length of the periodic trajectory of the oscillator, and R the radius of 

curvature of the curves at the endpoints of the trajectory. we consider motion with collisions. 

If c>o, the motion is stable only provided 1<2R (see (6.1)). Comparing this result with 

inequalities (4.8), we see that the presence of an attractive elastic force does not affect 

the stability of oscillations with collisions. Now let c<O. If 1<2R, the motion is stable 

when 4h>JcIZ(R--112). But if 1>2R, the stability condition is expressed by the inequality 

4h<IcIZ(R-U2). In the case of equality, l=2R, the periodic oscillation is degenerate: its 

multipliers equal unity. 
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